Hypercyclic operators on spaces of block-symmetric analytic functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composition operators acting on weighted Hilbert spaces of analytic functions

In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and  observed that a formula for the  essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators  are investigated.

متن کامل

composition operators acting on weighted hilbert spaces of analytic functions

in this paper, we considered composition operators on weighted hilbert spaces of analytic functions and  observed that a formula for the  essential norm, gives a hilbert-schmidt characterization and characterizes the membership in schatten-class for these operators. also, closed range composition operators  are investigated.

متن کامل

Irreducible Multiplication Operators on Spaces of Analytic Functions

Mφ : H → H for φ ∈ H∞(Ω). We mention some known results in this area that serve as a motivation for the present paper. First, if H is the classical Hardy space of the unit disk D, and if φ is an inner function on D, then Mφ is a pure isometry and a shift operator on H , and so its reducing subspaces are in a one-to-one correspondence with the closed subspaces of H (φH). Therefore, the reducing ...

متن کامل

Pointwise multiplication operators on weighted Banach spaces of analytic functions

For a wide class of weights we find the approximative point spectrum and the essential spectrum of the pointwise multiplication operator Mφ, Mφ(f)=φf , on the weighted Banach spaces of analytic functions on the disc with the sup-norm. Therefore we characterize when Mφ is Fredholm or is an isomorphism into. We study also cyclic phenomena of the adjoint map M ′ φ.

متن کامل

Interpolation by hypercyclic functions for differential operators

We prove that, given a sequence of points in a complex domain Ω without accumulation points, there are functions having prescribed values at the points of the sequence and, simultaneously, having dense orbit in the space of holomorphic functions on Ω . The orbit is taken with respect to any fixed nonscalar differential operator generated by an entire function of subexponential type, thereby ext...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Carpathian Mathematical Publications

سال: 2013

ISSN: 2313-0210,2075-9827

DOI: 10.15330/cmp.5.1.59-62